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Abstract　　A visual search is implemented when the eye moves to �nd a target symbol amongst many other 
symbols (distractors). The ef�ciency of a visual search is described by Hick’s law, which shows that the search 
time increases logarithmically as the number of symbols increases. In this paper, the ef�ciency of visual search 
was analyzed from the perspective of the network features of a conceptual ‘unobservable’ gaze position network 
superimposed on a monitor screen �lled with many symbols (search array board). We assume that the gaze po-
sition does not move freely around the search array board, but rather moves in a way restricted to the unobserv-
able gaze position network. First, we statistically veri�ed that the arti�cial gaze position network designed from 
the data of visual search experiments have small-world features, and depends on the ratio of the saccades. Sec-
ond, by implementing gaze step simulations on such small-world networks, we statistically veri�ed that the 
simulation search times were close to those obtained from the experiments and also to the minimum search 
times. Thus, this study suggests that an ef�cient visual search can be explained by a small-world architecture 
hidden in the unobservable gaze position network and thus has to be arti�cially designed.
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1.　  Introduction

Finding a target symbol from amongst many distractors 
is called a visual search. This has been studied by many 
researchers who have set several different tasks and con-
ditions for their search experiments. For example, Amor 
et al. showed multifractal behavior arising from sequen-
tial gaze behavior in searching for a target symbol [1], 
and modeled their strategies using saccade behavior [2]. 

Drew et al. [3] experimented on a combination of visual 
and memory searches, and found that increasing the 
number of target symbols to memorize decreased the ef-
�ciency of the visual search. Becker [4] found that the 
dwell time of the gaze was affected by distractors similar 
to the target symbol. Dewhurst et al. [5] focused on the 
similarity of scanpaths in a sequential number search 
task. Dube et al. [6] clari�ed that a visual working mem-
ory supported ‘facilitation’, which moves the gaze posi-
tion to an object similar to the target symbol in the search 
array board, and that ‘inhibition’ keeps the gaze position 
away from the distractors. Watson et al. [7] examined the 
difference between ‘looking’ and ‘seeing’ in a visual 
search, and showed the latter passive strategy made a vi-
sual search more ef�cient than actively searching. Greene 
and Brown [8] looked at the saccadic in�uence on �xa-
tion duration, and suggested that post-saccadic in�uenc-
es should contribute more to �xation duration than 
pre-saccadic in�uences in a visual search.

Some studies related to the real world have also been 
reported. Wasaki et al. [9] investigated gaze patterns 
during driving a vehicle in several hazardous situations. 
Clarke et al. [10] asked whether an individual’s strategy 
and performance in one search task correlates with how 
that person performs in two other different tasks. Schill 
et al. [11] conducted visual search experiments using 
videos instead of pictures. Wolfe [12] was interested in 
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how serial and parallel processes collaborate in a visual 
search, and considered a real search for multiple target 
symbols in a complex scene that occurs only once. Fur-
thermore, Wolfe and Horowitz [13] proposed �ve factors 
that guide the gaze position to the target symbol during a 
visual search, such as guidance based on the history of 
prior searches. This is similar to audio guidance of ap-
propriate landmarks to help visually impaired persons 
reach their destinations [14, 15].

In these visual searches, the movement of the eye 
must be such that it �nds the target symbol swiftly, be-
cause this is bene�cial to the activities of our daily 
lives [16]. According to Hick’s law [17], the time re-
quired to make a decision, i.e., the search time required 
to �nd the target symbol, is linearly related to the loga-
rithm of the number of distractors. This means that a vi-
sual search can be optimized, in the sense that a long 
period of time to �nd a target symbol is undesirable. If 
one knows the position of the target symbol in advance 
of the visual search, one can move the gaze position to it 
via the shortest scanpath. Otherwise, one will have to 
search randomly to �nd the target symbol. It is not yet 
clear what kind of random search is necessary to obtain 
an ef�cient visual search. The visual system extends 
from the retina to the visual cortex in the brain; hence a 
technique to �nd a target symbol within a short period of 
time may be acquired by training. We have studied the 
ef�ciency of visual searches based on the assumption 
that the ef�ciency can be estimated from eye movements, 
without the need to monitor the activity in the visual cor-
tex [18–20].

The movements of the eye are roughly classi�ed into 
two kinds; involuntary small �xational movements and 
voluntary saccades. These are identi�ed by the gaze po-
sition interval, or gaze step [21] between two gaze posi-
tions, measured on a monitor screen �lled with many 
symbols (search array board). Fixational eye movements, 
or relatively small gaze steps, contribute to the percep-
tion of the symbol under, or near, the gaze position, if it 
continues for at least 0.1 seconds [22, 23] (or approxi-
mately 0.5 seconds at the maximum [24]). Saccadic eye 
movements are useful when the participant can scan the 
whole area of a monitor screen �lled with many symbols 
in a short period of time. Combinations of such �xation-
al and saccadic gaze steps draw ‘network-like’ �gures on 
the search array board, using nodes (gaze positions) and 
line segments between two nodes (gaze steps). The 
movement of the gaze position seems to be free, but it 
also seems to be restricted to such conceptual ‘unobserv-
able’ networks in the background of the movement of the 
gaze position. The ability of a visual search to �nd the 
target symbol swiftly must be hidden somewhere in the 
unobservable gaze position network superimposed on 

the search array board. No study has yet been conducted, 
which hypothesizes that unobservable networks control 
the movement of the gaze position. Elucidation of such 
networks may also be useful to reveal the ef�ciency of 
the visual search.

The main purpose of this study was to examine the 
ef�ciency of visual searches, using such unobservable 
gaze position networks from the viewpoint of complex 
network science. Several networks observed in human 
societies, such as electric power grids, epidemics, the 
brain, and IoT [25–30] are known to possess ‘small-
world’ features. This means that the distance between 
two arbitrary nodes in the network are separated by only 
six degrees on average, even as the size of the network 
gets larger. A requirement for a small-world network is 
that two criteria should be simultaneously satis�ed [27]. 
One is a global criterion reducing the actual large world 
to the small world by long line segments, or shortcuts, 
between nodes. The other is a local criterion gathering 
several nodes together as a cluster, which is composed of 
adjacent nodes connected by short line segments. If a 
network is small-world, then the distance between two 
arbitrary nodes is short and any node is clustered among 
nearest neighbors. We assert, as presented for the �rst 
time in this paper, that the small-world features of the 
unobservable gaze position network must be related to 
the ef�ciency of the visual search, through both a quick 
scan by the global criterion and accurate recognition by 
the local criterion.

We have considered, so far, the possibility of using a 
simple one-dimensional network [18]. Additionally, by 
calculating the Hurst exponent [31–33], we argued that 
the change in the temporal structure of the gaze steps 
during a visual search is scale invariant [19]. Further-
more, we con�rmed that the mean two-dimensional net-
work on the search array board designed from the visual 
search experiments became a small-world network [20]. 
However, three issues in our previous study remained to 
be resolved: 1) the study did not include a statistical 
analysis; 2) the minimum gaze step magnitude was set at 
1 millimeter by rounding up, so that the �xational �uctu-
ations on the search array board were relatively more 
marked than the experimental results; and 3) saccades 
were de�ned conventionally as eye velocities of 30 de-
g/s or greater, so that the classi�cation of saccades did 
not re�ect individual differences between the partici-
pants, such as some having relatively smaller gaze steps 
than others. In this paper, we address the above three is-
sues, and prove that the ef�ciency of a visual search is 
derived from the small-world features hidden in the gaze 
position network (actual two-dimensional network). 
Speci�cally, 1) we identi�ed networks that were not sta-
tistically different from small-world networks; 2) we set 
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the minimum gaze step magnitude at 0 by rounding, i.e., 
a magnitude of 0 denotes that the gaze position stays on 
the node of the network for a certain length of time; and 
3) we determined the threshold that differentiates �xa-
tional from saccadic gaze steps by versatile discriminant 
analysis (see Section 3.1). Thus, an arti�cial gaze step 
model moving on the gaze position network satisfactori-
ly reproduced the real gaze steps obtained from visual 
search experiments.

First, the visual search experiments are described 
(Sections 2 and 3) in which every participant found one 
target symbol out of many distractors as swiftly as possi-
ble. Second, using data obtained from the experiments 
and applying the Watts and Strogatz’s algorithm [27], we 
designed several gaze position networks (Section 4). We 
statistically veri�ed that some of them had small-world 
features (Section 5). Finally, we propose that visual 
search simulations using an arti�cial gaze step model on 
the small-world network explain the short search times 
obtained from the experimental data (Section 6).

2.　  Methods of Visual Search Experiment

The experiment was performed in accordance with the 
Declaration of Helsinki, and was approved by the ethics 
research committee of Niigata University (No. 3005). In-
formed consent was acquired from all the participants 
prior to their participation.

2.1　  Design, Task, and Participant
The visual search experiments were performed using 
monocular recording (the right eye) with an iView XTM 
Hi-Speed (SensoMotoric Instruments, Teltow, Germany) 
operating at an acquisition frequency of 500 Hz (0.002 
seconds). The participant sat 600 mm away from the 
monitor screen and his behavior was assessed through 
the keyboard. We obtained precise gaze position data 
from the movements of the eye using a jaw-receiving 
stand. The experiment was conducted under an average 
environmental illuminance of 270 lx. The task presented 
to the participant was to �nd only one target symbol as 
swiftly as possible from an array presented on a 23-inch 
monitor (horizontal: 1920 pixels or 524 mm, vertical: 
1080 pixels or 295 mm).

The array consisted of 256 (16 ×  16) different ran-
domly allocated symbols comprising Gothic-type sym-
bols; Arabic, Greek and Chinese numerals; mathematical 
symbols; letters from Roman, Greek, Cyrillic (Russian) 
and Kannada (Indian) alphabets; Hiragana and Katakana 
(Japanese), and other special characters. We tried to in-
corporate symbols with both many and few random 
strokes. Moreover, we incorporated readable (Hiragana, 
numbers, etc. for Japanese participants) and unreadable 
(Cyrillic and Kannada) characters in equal proportion as 

far as possible. However, similar symbols were not used, 
such as the capital letter “O” and the number “0”. All the 
symbols were 8 mm  ×   8 mm in size and presented in 
black on a white background. The distance between two 
symbols was also 8 mm. To break the regular alignment, 
the relative position of each symbol was shifted random-
ly by a maximum of 50% up, down, left or right from the 
central position, as shown in Fig. 1(a). The total size of 
the search array board was approximately 256 mm  ×   
256 mm.

Sixteen male university students (age 22.7  ±   0.9) 
participated in the experiments. Each participant repeat-
edly performed 6 trials. In one trial, the target symbol 
was �rst presented in the central position on the monitor 
screen to be memorized by the participant, and then the 
search array board was presented to the participant by 
depressing the space key. Therefore, at the beginning of 
each trial, every participant was supposed to �x his eyes 
onto the central position of the monitor screen. The posi-
tions of the 256 symbols including the target symbol 
were randomly changed for each trial. We also intention-
ally set the search array board without the target symbol 

Fig. 1　  (a) An example of a search array board and the mea-
sured scanpath of the gaze position. (b) Conceptual 
diagram of the gaze step magnitude rt, its angle θt, 
and the drift angle of eye movement ϕ.
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in 2 arbitrary trials, i.e., ‘dummy trials.’ The remaining 4 
trials were ‘ordinary trials’ with the target symbol. All 
trials were forcibly terminated after 60 seconds, regard-
less of whether it was a dummy trial or the participant 
did not �nd the target symbol in an ordinary trial. When 
�nding the target symbol, the participant indicated it by 
depressing the space key.

2.2　  Data Preprocessing
The output data are the search time resolved into 
0.002-second steps, the diameter of the pupil in the eye, 
and the gaze position (ut, vt) in pixels at time t. When the 
diameter of the pupil was not measured correctly (for ex-
ample due to eye blinks), the corresponding data were all 
removed from analysis because of incorrect gaze posi-
tions. In order to obtain the converted gaze position (xt, 
yt) in millimeters, we used the following transforma-
tions:

xt = 524 ut / 1920, (1)
yt = 295 vt / 1080, (2)

where 1 pixel corresponds to approximately 0.03 degrees 
of the drift angle, and 1 mm to approximately 0.1 deg. 
The gaze step magnitude rt in millimeters at time t be-
tween (xt, yt) and (xt−1, yt−1) was calculated using the fol-
lowing equation:

rt = (xt − xt−1)2 + (yt − yt−1)2. (3)

The rt in eq. (3) is processed as follows:
rt = (rt−2 + rt−1 + rt + rt+1 + rt+2) /5, (4)
γt = |rt + 0.5|. (5)

The rt   in eq. (4) represents a simple moving average of rt 
in eq. (3). This smoothing is adopted to reduce noise. 
The integer γt in eq. (5) represents quantization for rt   by 
means of rounding off, where ·   represents a mathemat-
ical �oor function.

The direction of rt on the monitor screen is described 
by the angle θt, which is sampled every 1 degree by 
rounding off. θt is measured in a counter-clockwise di-
rection from the right-hand side of the screen, where θt =  
0 [Fig. 1(b)]. After simple moving average, the angle θt 
at time t is associated with γt at time t. In the next section, 
we select several data that are necessary to design gaze 
position networks, and derive an arti�cial gaze step mod-
el from the visual search experiments to be used in the 
visual search simulation.

3.　  Results of the Visual Search Experiment

The results of the dummy trials are presented in Section 
3.1. The results of the ordinary trials are presented in 
Section 3.2. An example of the measured scanpath of the 
gaze position is shown in Fig. 1(a) as a red line.

3.1　  Dummy Trials
In the dummy trial, we obtained about 30000 sequential 
measurements of the gaze step magnitude rt in the maxi-
mum trial time of 60 seconds with sampling period of 
0.002 seconds. Sixteen dummy trials randomly selected 
from all participants were analyzed. The γt calculated 
from eqs. (4) and (5) were classi�ed either as �xational 
or saccadic line segments. Bao et al. [20] identi�ed the 
saccadic line segments as those with drift angular veloc-
ity greater than 30 deg/s, which is a conventionally used 
method [34–36]. Other studies used neural networks [37] 
and intelligent tools [38] to classify �xations and sac-
cades. In this paper we classi�ed γt into either �xational 
or saccadic line segments using the versatile discrimi-
nant analysis proposed by Otsu [39], which was original-
ly applied to the binarization of gray scale images. Otsu’s 
discriminant analysis has the advantage that the thresh-
old that differentiates between the �xational and sac-
cadic line segments is calculated based on each trial.

Let N be the total number of γt values, and nl be the 
number that satis�es l −  1 <  γt ≤  l, i.e., every γt is quan-
tized by a natural number l (the maximum value is denot-
ed by lmax). Then a threshold l* (<  lmax) is determined at 
which the variance between the �xational and saccadic 
line segments is the highest. The variance σ2

FS is given by

σ2
FS (l∗)= NF (µF−µT )2+NS (µS −µT )2 /N, (6)

where NF =
l∗
l=1 nl and NS =

lmax

l=l∗+1 nl are the numbers 
of �xational (suf�x F) and saccadic (suf�x S) line seg-
ments, respectively, and NF +  NS =  N. The two mean val-
ues μF and μS are given by µF =

l∗
l=1 lnl/NF and 

µS =
lmax

l=l∗+1 lnl/NS, respectively. The total mean value 
μT is given by µT =

lmax

l=1 lnl/N.
For example, the sequence of γt data obtained from 

one of the participants is shown in Fig. 2(a), and the his-
togram is given in Fig. 2(b). The threshold classifying 
the saccadic from the �xational line segments is deter-
mined to be l  * =  2, because the maximum variance ob-
tained using eq. (4) is σ2

FS (l∗) 0.8 at l  * =  2, which is 
shown in Fig. 2(c). In this trial (or for this participant), 
we identi�ed the �xational line segments to be under 
2 mm; therefore, the saccadic line segments were evalu-
ated as being over 3 mm. Similarly, γt values from other 
trials were also classi�ed into either �xational or sac-
cadic line segments. For almost all trials, l  * was 2 mm, 
and the maximum and minimum values were 3 mm and 
1 mm, respectively.

Both types of line segments did not appear at ran-
dom, i.e., the behavior was temporal with a large Hurst 
exponent [31–33], apart from normal Brownian motion. 
They appeared consecutively for a certain period of time. 
In general, one saccade is considered to last at least 0.02 
seconds, i.e., it is formed from at least 10 saccadic line 
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segments in the experiments measured with a sampling 
frequency of 500 Hz (or 0.002 s). In this paper, one sac-
cade was formed as a straight line connecting the start 
and the end points, for all consecutive saccadic line seg-
ments lasting more than 0.02 seconds. Therefore, the 
magnitude of one saccade, R, is generally less than 

ds/0.002
t=1 γt, where ds represents the saccade duration 

(consecutive saccadic line segments). For less than 10 
consecutive saccadic line segments, we considered this 
to be a saccade only when the magnitude of the straight 
line from the start to the end points was above the thresh-
old l  *. Otherwise, these line segments were interpreted 
as �xational ones. Similar to the saccade extraction pro-
cess, less than 10 consecutive �xational line segments 
between two saccades were interpreted as errors; in this 
case, we omitted the �xational line segments (error) and 
combined the two saccades on both sides of the error into 
one large saccade. In this paper, therefore, some �xations 
were composed of more than 10 consecutive line seg-
ments, or longer than 0.02 seconds.

Figure 3(a) shows a histogram of the frequencies of 
the magnitudes of all the �xational line segments for the 
16 participants. Figure 3(b) shows the data in Fig. 3(a) 
with the vertical axis changed to a logarithmic scale. The 

magnitudes were less than 3 mm from Otsu’s discrimi-
nant analysis, but line segments with relatively large 
magnitudes greater than 4 mm were also obtained as �x-
ational line segments that did not pass the saccade ex-
traction process, as mentioned above. The frequencies of 
appearance were 63.55% for 0 mm, 32.45% for 1 mm, 
3.64% for 2 mm, 0.35% for 3 mm, and less than 0.01% 
for others. Approximately two-thirds were 0 mm, and 
they were interpreted as not moving. Almost all the re-
maining one-third were classi�ed as 1 mm (moving a 
little). In the design of the gaze position network in Sec-
tion 4, �xational line segments from 1 to 6 mm, based on 
the histogram in Fig. 3(b), are used. On the other hand, 
the percentage of line segments at ‘0 mm’ (63.55%) was 
used as the probability that the arti�cial gaze step model 
stays on the node of the gaze position network in the vi-
sual search simulation (see Section 4).

Figure 3(c) shows a histogram of the frequencies of 
the magnitudes of all the saccades for the 16 participants, 
where the abscissa represents the saccade magnitude, R. 
The most frequent magnitude was approximately 20 mm. 
Although there were individual differences in the data, it 

Fig. 2　  (a) Temporal sequence of the quantized gaze step 
magnitudes γt. (b) Histogram of γ data with lmax =  
14. (c) Variance σ2

FS (l∗). The maximum value is at 
l  * =  2. This means that γt less than 2 mm should be 
regarded as �xational line segments.

Fig. 3　  Histograms of �xation magnitude with (a) a linear 
ordinate and (b) a logarithmic ordinate. (c) Histo-
gram of saccade magnitude. (d) Mode saccade dura-
tions for given saccade magnitudes. The red curve is 
an approximate curve.

Yuxuan WANG, et al: Small-World Features of a Gaze Position Network (41)



did not make sense to categorize the distribution by indi-
vidual differences based on the number of participants in 
this study. Therefore, we considered the individual dif-
ferences to be errors and expressed them as a single dis-
tribution. The red curve, Ls, is approximated by the fol-
lowing function:

Ls = 14.4R exp (−0.068R). (7)
Equation (7) is used in designing the gaze position net-
work (see Section 4).

Figure 3(d) shows the relationship between the sac-
cade magnitude and the saccade duration. The ordinate 
represents the mode saccade duration for a given saccade 
magnitude on the abscissa. This represents, in a sense, 
the main sequence [40] that is often applied to the rela-
tionship between the duration or peak velocity and the 
saccade magnitude. The red curve Ds is approximated by 
the following function:

Ds = 0.0023R0.592, (8)
where the values of the ordinate are quantized every 
0.002 seconds. In this paper, this function [eq. (8)] is 
used to determine the time that the arti�cial gaze step 
model moves on the saccade of the gaze position net-
work (see Section 6).

Figure 4(a) and (b) shows histograms of the fre-
quencies of the angles of all the �xational line segments 
and the angles of all the saccades, respectively. When 
designing a gaze position network, line segments of 
1 mm are set to 8 neighboring nodes (see Section 4) as 
the �rst reference network. Therefore, the distribution of 

�xational line segments greater than 2 mm in magnitude 
only were used in the histogram, and the line segments of 
0 mm and 1 mm were excluded in Fig. 4(a). Although 
the directions of the �xational movements were mostly 
up and down, those of the saccades were mostly right 
and left as shown in Figs. 4(a) and (b). Approximate 
functions, Af and As, for the red curves shown in Figs. 4(a) 
and (b), respectively, are given in eqs. (9) and (10),

Af =
1700×34
α2+342

+
1300×12

(α−90)2 + 122
+

1700×34

(α−180)2 + 342

+
1300×12

(α−270)2 + 122
+

1700×34

(α−360)2 + 342
,

 (9)

As = 4.8 cos
2π
180
α + 4.9 cos

4π
180
α + 9.1, (10)

where α is the angle in degrees. These are used in design-
ing the gaze position network (see Section 4).

The ratio q, which is the number of saccades to the 
total number of line segments composed of saccades and 
�xational line segments except for l =  0, measured in the 
16 trials of the visual search experiment was calculated 
to be q ≅  0.021 =  qexp (suf�x ‘exp’ signi�es that it is an 
experimental value). Fixational line segments, ‘l  =   0,’ 
were excluded because these do not appear as line seg-
ments in the gaze position network.

3.2　  Ordinary Trials
From the ordinary trials, we also obtained the search 
time. Of the 64 trials (4 trials per participant, and 16 par-
ticipants in total), valid data for analysis was obtained in 
57 trials. The search times for these trials were all greater 
than 1 second. The median search time was approxi-
mately 11.8 seconds, and we used this value in the visual 
search simulation (see Section 6). The remaining 7 trials 
were classi�ed as measurement failures, due to failure to 
�nd the target symbol. The search time for these trials 
was 60 seconds.

Figure 5 shows an example of the variation in dis-
tance from the gaze position to the center of the target 
symbol. Constant values and rapidly changing move-
ments represent �xations and saccades, respectively. In 
order to �nd the target symbol, the extent of perception 
must be de�ned. In general, the requirement for percep-
tion is that the gaze must remain stationary for at least 
0.1 seconds [22, 23]. Moreover, peripheral vision is 
known also to contribute to perception [41–46]. Some 
researchers [42–44] have reported that central vision and 
peripheral vision are mutually and intricately related, but 
others [45] report that the peripheral vision does not have 
much impact on the search performance. In a visual 
search, therefore, knowledge of the peripheral vision 
may be underutilized. In �nding target symbols, Wu and 
Wolfe [47] classi�ed the visual �eld into three types: res-

Fig. 4　  (a) Histogram of �xation angles with magnitudes 
greater than 2 mm. (b) Histogram of saccade angles. 
Red curves represent approximate curves.
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olution (on the target), attentional (near the target), and 
exploratory (far from the target), and showed why visible 
targets can be clearly missed, especially in the latter two 
types. Focusing on the attentional visual �eld (or the spa-
tial extent of attention [48, 49]) in the present study, we 
consider the following two parameters that contribute to 
�nding of the target symbol. One is the distance between 
the center of the target symbol and the current node of 
the gaze position. The smaller this distance, the more 
likely one is able to �nd the target symbol. The other is 
the �xation duration remaining within the spatial extent 
of attention. The longer this duration, the easier the tar-
get symbol can be found. In our experiments, when the 
radius of the extent of attention was greater than 30 mm, 
the participants hardly ever found the target symbol. 
Thus, in the visual search simulation in Section 6, the 
extent of attention was set at a radius less than 30 mm. 
The spatial extent of attention is shown by the horizontal 
dashed line illustrated in Fig. 5. There were a total of �ve 
�xation durations, the median of which is shown by the 
yellow circles. In only the last �xation duration, the par-
ticipant successfully found the target symbol.

The total number of �xation durations in the spatial 
extent of attention obtained from the 16 study partici-
pants was 152, 42 of which led to the discovery of the 
target symbol. Figure 6(a) presents the mean distance to 
the target symbol, δ in mm, for the non-�nding and �nd-
ing cases. Figure 6(b) shows the mean �xation duration, 
τ in seconds, for the non-�nding and �nding cases. The 
vertical bars represent the standard deviations in both 
graphs. We veri�ed that δ was shorter [Fig. 6(a)] and τ 
was longer [Fig. 6(b)] when the target symbol was 
found. These two variables were integrated into one vari-
able to produce the �nding index, φ in s/m. This is given 
by the following;

ϕ =
τ

δ
. (11)

It is clear from eq. (11) that a combination of long �xa-
tion duration τ and short distance δ to the target symbol 
results in a large �nding index φ. When the �nding indi-
ces are arranged in descending order, the greater the val-
ue of φ, the easier the target symbol is found. Let label 1 
be assigned when the target is found, and label 0 when 
the target is not found in descending order of φ. Then, we 
can obtain the probability ρ of �nding a target symbol by 
a simple moving average for φ in descending order, as 
follows:

ρ (ϕk) =
k+19

i=k−19
U (ϕk) /39, (12)

where φk represents the �nding index for the k-th φ ar-
ranged in descending order. U (φk) is given by

U (ϕk) =


1, finding

0, non-finding
. (13)

The plots in Fig. 6(c) show the probability ρ of �nding a 
target symbol for the �nding index φk. The red curve is 
an approximate curve given by the following equation,

Fig. 5　  Distance from the gaze position to the center of the 
target symbol (one example). The spatial extent of 
attention is shown as a region smaller than 30 mm. 
The �ve yellow circles in the �xation duration are 
median values.

Fig. 6　  (a) Mean distances to the target symbol from the 
gaze position and (b) mean �xation durations for 
non-�nding and �nding cases. (c) Probability of 
�nding a target symbol for given �nding indices φ. 
The red curve represents an approximate curve.
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ρ̄ (ϕk) =



0.52 1−exp −ϕk−0.008
0.016

, ϕk>0.008,

0, ϕk ≤ 0.008. (14)

Equation (14) is used in the visual search simulation (see 
Section 6) as the probability of �nding a (virtual) target 
symbol.

4.　  Design of a Gaze Position Network

Using the experimental results of the dummy trial, we 
constructed a gaze position network. We superimposed 
65536 (256 ×  256) nodes at 1 mm intervals on the search 
array board. First, every node was coupled with 8 other 
adjacent nodes with ‘1 mm’ �xational line segments. By 
the boundary conditions, the total number was 260610. 
Then, �xational line segments from 2 to 6 mm were 
probabilistically added to the above network based on 
the frequency of appearance [Fig. 3(b)] and the angle 
[Fig. 4(a), or eq. (9)]. If the tip of the �xational line seg-
ment did not end with a node, it was connected to the 
node nearest to the tip. Note that only one line segment is 
allowed between two nodes.

Next, we exchanged some of the �xational line seg-
ments selected at random with saccades, using the histo-
grams in Fig. 3(c) [eq. (7)] and Fig. 4(b) [eq. (10)]. By 
replacing one �xational line segment with one saccade, 
the total number of segments (including saccades) was 
kept constant. The ratio of the number of saccades to the 
total number of line segments, q, is a parameter used to 
design gaze position networks. A smaller value of q im-
plies that it is closer to a regular network composed of 
almost all �xational line segments, whereas a greater val-
ue of q signi�es a network closer to a random graph com-
posed of almost all saccades. The network that appears 
when q =  qexp ≅  0.021 should be a real visual search. The 
saccade angle, θs, is probabilistically extracted from the 
histogram in Fig. 4(b) [eq. (10)]. Similarly, the saccade 
magnitude R is extracted from the histogram in Fig. 3(c) 
[eq. (7)]. Then the saccade is drawn in the direction θs 
with magnitude R, and is coupled to the node nearest to 
the tip. If the tip of the saccade is outside the search array 
board, the angle θs is re-extracted from Fig. 4(b) [eq. 
(10)] until a valid θs is obtained.

This procedure of replacement of the �xational line 
segment with a saccade was iterated until the current ra-
tio q̂  of the saccades was above the preset q. Then, the 
gaze position network was completed with the ratio q̂ , 
where q̂  is nearly equal to but usually greater than q. Sto-
chastically designed gaze position networks are differ-
ent, but any network is a sample with an unbiased esti-
mator Q of the ratio q̂ , where Q is the random variable 
that satis�es the expectation E (Q) = q̂ q.

5.　  Veri�cation of a Small-World Network

5.1　  Two Parameters
As the ratio q increases, the network generally changes 
from a locally coupled regular network to a small-world 
network, and �nally to a random network [27]. There are 
two parameters to evaluate whether or not the network is 
a small-world network. One is a clustering coef�cient at 
a randomly selected node i, denoted by Ci  (q), and the 
other is a weighted minimum distance between node i 
and another node, denoted by Li  (q). Ci  (q) is derived 
from mi, which is the number of triangles constructed by 
coupling with two other nodes that have a path with node 
i, and is expressed as follows:

Ci (q) =
mi

ki

2

=
2mi

ki (ki − 1). (15)

Li (q) is calculated using the Dijkstra algorithm [50]. The 
weight of the line segment represents the time for which 
an arti�cial gaze step model moves, as described in Sec-
tion 6. This value is obtained from Fig. 3(d) [eq. (8)].

In this paper, we randomly selected 1000 nodes for 
every q. The median Ci (0) and Li (0) at q =  0 were C̄ (0)  ≅  
0.429 and L̄ (0)  ≅  0.178, respectively, which are estimat-
ed as the maximum values. Then, the gaze position net-
work is a locally coupled network composed of only �x-
ational line segments. Ci  (q) and Li  (q) have the same 
dimensions if they are normalized by their maximum 
values. The difference hi  (q) between Ci  (q) and Li  (q) 
normalized by C̄ (0)  and L̄ (0) , respectively, is de�ned by

hi (q) = Ci (q) /C̄ (0) − Li (q) /L̄ (0). (16)
From eq. (16), a small-world feature is observed when 
both the large clustering coef�cient necessary for accu-
rate recognition and the short distance between arbitrary 
positions of the network necessary for rapid scan are sat-
is�ed. In other words, the small-world network appears 
at a relatively large value of hi (q).

5.2　  Statistical Test
Figure 7(a) shows the relationship of median Ci (q) /C̄ (0) 
(denoted by circle) or median Li (q) /L̄ (0) (denoted by 
triangle) with respect to q on a logarithmic scale, where 
the symbol x represents the value at q ≅  qexp. Both values 
are close to 1 in the neighborhood of small q. As q in-
creases, the weighted minimum distance (triangle) de-
creases before the clustering coef�cient (circle) does in 
the range of q <  0.2. It is presumed, therefore, that medi-
an hi (q), denoted by h̄ (q) , possesses only one maximum 
point. If the network satis�es both conditions of large 
clustering coef�cient and small weighted minimum dis-
tance, h̄ (q)  becomes so large that it is known as a small-
world network [27]. Therefore, h̄ (q)  is an important in-
dex to evaluate whether a network architecture has 
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small-world features.
In Fig. 7(b), h̄ (q)  is plotted against q between 0.002 

and 0.683 on a logarithmic scale, where the vertical bars 
represent quartile deviations. The maximum h̄ (q)   ≅   
0.337 occurs at q =   qmax ≅   0.034, as illustrated by the 
square. By comparing with the maximum value using 
one-sided Steel’s test, one gray-�lled circle and all black 
circles were found to be signi�cantly different (p <  0.05 
and p <  0.01, respectively), while four values of h̄ (q)  in 
the range 0.017 <   q <   0.044 were not signi�cant (i.e., 
they possessed small-world network features). The ex-
periment value (symbol x, qexp ≅   0.021) was contained 
within this range, indicating that the actual gaze position 
is expected to move over a small-world gaze position 
network. The method of analysis in this paper is different 
from the previous work [20] and the ratio of the number 
of saccades changes from 0.043 [20] to 0.021, but both 

experimental values are within the small-world range of 
0.017 <  q <  0.044, i.e., the results are not affected by the 
analytical method.

6.　  Visual Search Simulation

6.1　  Method of Simulation
Next, we simulated a visual search on several gaze posi-
tion networks using an arti�cial gaze step model. We 
place the gaze step model at the start node closest to the 
center of the gaze position network. In addition, we es-
tablished a virtual target symbol in a randomly selected 
location within a square area with 8 ×  8 =  64 nodes. First, 
the gaze step model probabilistically determines whether 
to stay in the same place (63.55% probability estimated 
for 0 mm in Section 3.1) or to move (the remaining 
36.45% probability). The simulation time required is 
0.002 seconds (sampling period) even if the gaze step 
model stays on the node. In the case of moving, the gaze 
step model moves randomly to the next node on the �xa-
tional line segment every 0.002 seconds, while searching 
for the virtual target symbol. From the experiment de-
scribed in Section 3.2, we set that at least 1 second is 
needed for discovery of the virtual target symbol. When 
the gaze step model reaches a node coupled with sac-
cades, it moves preferentially on one of the saccades for 
ds seconds which is estimated from Fig. 3(d) [eq. (8)]. 
After the saccades, the gaze step model moves on �xa-
tional line segments again for at least 0.02 seconds, until 
reaching the next node coupled with saccades.

When the virtual target symbol is in the spatial ex-
tent of attention (radius of 30 mm, refer to Section 3.2) 
of the arti�cial gaze step model, it is detected with a 
probability of �nding the virtual target symbol [Fig. 6(c) 
or eq. (14)]. This check is performed every time the gaze 
step model moves over a node until the virtual target 
symbol is out of the spatial extent of attention. From the 
monotonic increase in Fig. 6(c) [eq. (14)], the greater the 
�nding index becomes, the more easily the virtual target 
symbol is found. In other words, the longer the �xation 
duration and the smaller the distance between the gaze 
position and the virtual target symbol, the more easily 
the virtual target symbol is detected. Note here that the 
ease of �nding the virtual target symbol depends on the 
form of eq. (14).

In the visual search experiment, the participant re-
ceives not only perceptual ‘local’ information about 
whether the symbol he is currently looking at is the tar-
get symbol, but also navigational ‘global’ information 
about where the current gaze position is located on the 
search array board. Especially, the latter information is 
important to search evenly on the search array board. In 
order to design global information on the arti�cial gaze 
step model, we adopted a random way-point search. An 

Fig. 7　  (a) Median normalized clustering coef�cients (cir-
cles) and median normalized weighted minimum 
distances (triangles) for given q values. The symbol 
× represents the value at q ≅  0.021 ≅  qexp. (b) Medi-
an hi  (q) (denoted by h̄ (q) ). The non-�lled square 
represents the maximal h̄ (q)  (h̄ (q)  ≅  0.34), and the 
�lled circles and the gray circle represent signi�cant 
differences compared with the maximum (Steel’s 
test, p <  0.01 and p <  0.05, respectively). The range 
of 0.014 <  q <  0.044 was found to be not signi�cant 
(three non-�lled circles and one cross).
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arbitrary position was selected at random as a temporary 
destination. If the arti�cial gaze step model entered the 
spatial extent of attention (30-mm radius) of the way-
point, another temporary destination was newly set at 
another position. This operation was repeated until the 
virtual target symbol was found.

6.2　  Results of Simulation
Figure 8 shows the scanpaths of typical experimental 
searches and arti�cial simulation searches. Some partic-
ipants found the target symbol in approximately 21 sec-
onds [Fig. 8(a)], whereas others found it in just 3 sec-
onds [Fig. 8(b)]. Figure 8(c) is an arti�cial simulation 
search with q  =   qexp  ≅   0.021 (about 15 seconds until 
found). Figure 8(d) is another arti�cial simulation 
search with q  =   qmax  ≅   0.034 (about 13 seconds until 
found). These four �gures are similar but the difference 
between the experimental and arti�cial simulations is the 
saccades. In arti�cial simulations, the saccade is illus-
trated as a straight line (because saccadic line segments 
measured with a sampling frequency of 0.002 seconds 
are connected to a straight line in Section 3.1), whereas 
in the experiment the saccade is not always linear.

Figure 9(a) shows the median search time for every 
q (60 iterations ≅  57, that are the valid data from the or-
dinary trials) when the position of the virtual target sym-
bol was changed randomly for every iteration. The verti-

cal bars represent quartile deviations. The label S.W. 
represents small-world networks evaluated in the experi-
ment, as shown in Fig. 7(b). By comparison with the 
maximum value (q =  qmax ≅  0.034, square labels) using 
one-sided Steel’s test, the ranges of q shown by the single 
and double asterisks were found to be signi�cant, i.e., 
p <  0.05 and p <  0.01, respectively (gray-�lled and black-
�lled circles, respectively). This result means that as the 
value of q increases from the locally coupled gaze posi-
tion network generating �xational eye movements, the 
search time decreases and is minimized at around 11.8 
seconds where the network becomes small-world. Fig-
ure 9(b) shows the histogram of the experimental search 
time. Similarly, the histogram of the simulation search 
time for a random number q in the range of 0.017 <  q <  
0.044 that satis�es the small-world condition [“S.W.” in 
Fig. 9(a)] is shown in Fig. 9(c). These histograms are 
slightly different but roughly similar, i.e., they show a 
monotonically decreasing trend with increasing search 
time. Therefore, this analysis con�rmed that the ef�cien-
cy of a visual search should be derived from the small-
world features of the gaze position network. We clari�ed 
that the search time is relatively small when the gaze step 
model is simulated on the small-world network, and is 
also close to the experimental data.

However, even for greater values of q (q >   0.034), 
the search time remained constant. In other words, con-
trary to the authors’ expectations, the search time was not 

Fig. 8　  Experimental searches �nding target symbol (a) in 
21 seconds and (b) in 3 seconds. (c) A simulation 
search (q =  qexp ≅  0.021) �nding target symbol in 15 
seconds. (d) Another simulation search (q =  qmax ≅  
0.034) �nding target symbol in 13 seconds.

Fig. 9　  (a) Median search time of a visual search simulation 
for given q values (**p <  0.01, *p <  0.05 by Steel’s 
test). S.W. represents the region of the small-world 
network. (b) Histogram of experimental search time. 
(c) Histogram of simulation search time for a ran-
dom number q in the range of the small-world.
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necessarily minimized only when the gaze position net-
work was small-world. This can be attributed to the fact 
that the probability of �nding a target symbol [eq. (14)] 
may be incorrect, because it is evaluated from an actual 
visual search experiment in which a small-world net-
work was assumed. If the eye continues to move quickly 
without stopping, then empirically, �nding the target be-
comes more dif�cult. In order to estimate the correct 
probability of �nding the target, another visual search 
experiment in which the eye movement is not forced to 
stop is needed. We are now conducting an evaluation of 
the probability of �nding a target symbol depending on 
the value of q by presenting study participants with a 
spotlight window of the spatial extent of attention (radius 
30 mm), as shown in Fig. 10. This window automatically 
moves according to the gaze position network, so that the 
participant is only asked if there is a target symbol in it. 
Through such experiment, the probability of �nding the 
target symbol can be correctly assessed when the partic-
ipants are given a target �nding task with this small win-
dow moving quickly.

On the other hand, for q <  0.014 that is also outside 
the small-world range, why is a relatively long search 
time similar to the authors’ expectations obtained? The 
ratio of the area scanned by the gaze position to the area 
of the whole search array board is de�ned as the ef�cien-
cy [2]. In the range of q <  0.014, the number of saccades 
is small; consequently the ef�ciency is low and the per-
centage of gaze positions approaching the target symbol 
is small. The probability of �nding the target symbol [eq. 
(14)] is de�ned only when the target symbol enters into 
the spatial extent of attention of the gaze position. There-
fore, the relatively long search time observed for q <  0.01 
is not due to the effect of eq. (14), but to the effect of the 
ef�ciency.

7.　  Discussion

Our research has been based on the assumption that the 
ef�ciency of a visual search is hidden in the small-world 
features of an unobservable gaze position network. A 
small-world network is conceptually de�ned as having a 

relatively large h̄ (q)  [27], where q is the ratio of the sac-
cades. The value of h̄ qexp   estimated from the experi-
mental data was almost the maximum value [Fig. 7(b)]. 
In general, however, the value of qexp �uctuates depend-
ing on the experiment and the participants. In this paper, 
statistical analysis using Steel’s test clari�ed that any 
gaze position network constructed in the range of 0.014 ≤  
q ≤  0.044 should be classi�ed as a small-world network. 
When the saccades comprise 1.4 to 4.4% of all the gaze 
steps, we regard the gaze position network as having 
small-world features (Section 5). The experimentally 
evaluated value of qexp ≅   0.021 (2.1%) was within the 
range of a small-world network. We conclude, therefore, 
that the actual eye position is observed as if moving on a 
small-world network, and that the network is not explic-
itly observed in the visual search experiment.

The eye is an organ that is inseparable from the func-
tion of looking. Fixational eye movements, which are 
generally classi�ed as tremors, drifts, and microsac-
cades, are dedicated to the function of looking, such as in 
the perception of simple objects, words, and faces (so-
called passive vision [51]). On the other hand, saccades 
are required for active vision [51] and are specialized in 
the function of searching rather than looking. When the 
eye acquired the ability to search in addition to the abili-
ty to look, ‘large’ saccades presumably evolved from mi-
crosaccades that are considered to contribute to the eyes’ 
balance [52–54]. Such saccades that instantly shift the 
gaze position to a distant location are speculated to con-
tribute signi�cantly to a reduction in search time. Our 
arti�cial gaze step model showed that the search time 
decreased as the ratio of saccades included in the de-
signed gaze position network increased. When the ratio 
of saccades reached around 2.1% (between 1.4% and 
4.4%), the gaze position network became small-world 
and the search time was minimized. In other words, the 
small-world nature of the gaze position network is asso-
ciated with reduced search time to �nd the target symbol, 
in a similar manner as unobservable complex human re-
lationships re�ecting the smallness of the real world. [25–
27].

When the saccade ratio was further increased, how-
ever, the search time remained nearly constant at the 
minimum level, even though the gaze position network 
was no longer small-world. Such gaze position networks 
are composed almost entirely of saccades. There is the 
ability to ‘search’ for the target symbol, but the ability to 
‘look’ at it is greatly diminished. Therefore, too many 
saccades cause an increase in search time. In order to 
clarify the above hypothesis, we need to estimate an ap-
propriate probability for �nding depending on the ratio 
of saccades, q, as described in Section 6. Future work 
will be to determine experimentally the probability of 

Fig. 10　  Spotlight window of the spatial extent of attention 
(radius 30 mm). The window moves over the gaze 
position network.
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�nding, especially in the range of larger q values. To this 
end, we are currently conducting further experiments us-
ing the spotlight window shown in Fig. 10.

8.　  Conclusion

We implemented visual search experiments and veri�ed 
the assertion that an ef�cient visual search can be ex-
plained by the small-world features in an unobservable 
network superimposed on a search array board (gaze po-
sition network). Using discriminant analysis, which is 
often applied to the binarization of gray scale images, we 
extracted saccades that satisfy the main sequence from 
the gaze position intervals (or gaze step). Then, using 
distinct gaze steps, i.e., �xational movements and sac-
cades, we speci�cally designed gaze position networks. 
When the ratio of the saccades to the total number of line 
segments was close to that of the experimental data (q ≅  
0.021), the gaze position networks became small-world 
by satisfying both conditions of large clustering coef�-
cient and minimum distance between two arbitrary 
nodes. Additionally, simulation of the gaze position in 
searching for a virtual target symbol on a small-world 
network yielded ef�cient search times comparable to the 
experimental search times. Thus, we conclude that the 
small-world features hidden in gaze position networks 
improve the ef�ciency of visual searches.

In visual searches, it is generally presumed that the 
gaze position moves freely on the search array board to 
search for the target symbol. In this paper, in contrast, we 
hypothesized that unobservable (conceptual) networks 
behind the search array board control the ef�ciency of 
the visual search. We revealed that real networks de-
signed from the experimental data are small-world. Fur-
thermore, we simulated the search time using an arti�cial 
gaze step model and showed that the search time was 
minimum when the network was small-world. Thus, we 
have shown that the factors affecting the ef�ciency of a 
visual search can be explained from the viewpoint of 
complex network science such as small-world networks.
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